An experimental overview

Higgs Pair Production

QFT research seminar Institute for theoretical physics, University of Munster

Abraham Tishelman-Charny

Northeastern University

Monday, 16 May 2022

Personal introduction

- Finishing PhD with Northeastern University. Based at CERN since 2018 with CMS collaboration
- Performing a Higgs Pair Production analysis with the CMS Run 2 dataset
- Detector work: CMS Electromagnetic Calorimeter (ECAL):
 - Run coordinator
 - Trigger team member

1 Motivation

2 Experimental results

- Experimental setup
- SM and EFT
- Resonant searches

8 HL-LHC Projections

Motivation

2 Experimental results

- Experimental setup
- SM and EFT
- Resonant searches

3 HL-LHC Projections

Conclusions and outlook

Motivation: Higgs discovery

2012: The Higgs boson is experimentally discovered by the CMS and ATLAS collaborations [PLB 716 (2012) 30], [PLB 716 (2012) 1-29]:

(a) CERN: July 2012, discovery announcement

(b) SM particles

- Final missing particle of the Standard Model (SM) experimentally discovered
- "Golden" channels for discovery: $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ \rightarrow 4\ell$

Abraham Tishelman-Charny (NEU)

Motivation: Decay modes

- Advantage of the Higgs: Has many decay modes, handles for analysis
- Major factors in experimental analysis sensitivity:
 - Process branching ratio
 - Object reconstruction efficiency
 - Differentiation from backgrounds
- Different BSM searches with non 125 GeV Higgs may be more sensitive to certain final states

HH: Experimental Overview

Figure 1: Higgs branching ratios vs. mass [ref.]

 Want to measure properties including mass and couplings to SM particles - fundamental to SM

Following the discovery of a

new particle, what are we

 Can search for BSM physics, using Higgs as a bridge

SM. Want to compare to

experiment to see what **nature** has to say!

Motivation: Self-coupling

 Higgs potential after electroweak symmetry breaking:

$$V(h) = V_0 + \lambda v^2 h^2 + \lambda v h^3 + \frac{1}{4} \lambda h^4 + \dots$$

$$\lambda = 0.13, v = 246 \,\,\mathrm{GeV}$$

Self-coupling λ predicted by

Figure 3: Higgs potential

Motivation: Higgs potential stability

The higgs potential shape determines the higgs vacuum expectation value, and type of stability:

[ref.]

- Current Higgs and top quark mass measurements predict meta-stable minimum.
- Measurement of the higgs self-coupling would be a direct measurement of higgs potential, could verify or refute this

Abraham Tishelman-Charny (NEU)

HH: Experimental Overview

- Higgs self-coupling constant directly accessed through Higgs pair production
- BSM scenarios, such as those predicting a heavy resonance coupling to Higgs can be searched for via Higgs pair production

(a) di-Higgs triangle diagram with self-coupling λ

g 000000 - H g 000000 - H

(b) Heavy resonance decaying into two Higgs

Same final state **topology** leads to **natural** analysis extensions

Motivation: Production

Two leading order HH diagrams for gluon gluon fusion:

These destructively interfere, leading to small production cross section:

Abraham Tishelman-Charny (NEU)

Motivation

2 Experimental results

- Experimental setup
- SM and EFT
- Resonant searches

3 HL-LHC Projections

4 Conclusions and outlook

Motivation

2 Experimental results

- Experimental setup
- SM and EFT
- Resonant searches

3 HL-LHC Projections

Conclusions and outlook

Experimental setup: LHC

- CMS
- CERN has a large accelerator complex to accelerate particles.
- Final stage: The large hadron collider

Fit Foldequencies 3 paperint 3 in 1 EBB Relations for heart 9 partners 2 partners 2 partners 1 p

un de la constante de la constante

(b) The LHC

- (a) CERN accelerator complex
- The LHC is the largest machine ever built

► Circumference of 27 km, accelerates protons to ≈ 99.999999% the speed of light (≈ 6.5 TeV)

Abraham Tishelman-Charny (NEU)

Experimental setup: LHC

- The LHC produces high energy particle collisions
- Four major experiments based at the LHC to detect what is produced
- Today will talk about CMS and ATLAS experiments and results

Figure 4: LHC and its major experiments

Experimental setup: CMS

The CMS (Compact Muon Solenoid) experiment is a general-purpose particle detector, stationed on the LHC near Geneva Switzerland

- General purpose: Perform searches for DM, SUSY, rare processes, precision measurements, b-physics, ...
- Dimensions 21m long, 15m high and 15m wide.

Experimental setup: CMS

CMS is made of multiple layers in order to detect different particles: Inner silicon tracker, calorimeters, muon chambers

- Different particles leave different signatures in the detector
- Crucial for the ability to detect the many Higgs final states

Experimental setup: ATLAS

The ATLAS (A large Toroidal LHC ApparatuS) experiment is also a general purpose particle detector:

- Dimensions: 46 m long, 25 m high and 25 m wide. Largest volume detector ever built
- Similar to CMS, composed of layers including a tracker, calorimeters and muon chambers

- In a very similar fashion to CMS, ATLAS is able to detect different particles from different layers of detector
- Some layers use different technologies: Example, CMS (ATLAS) ECAL is made of Lead Tungstate crystals (metal layers and liquid argon)
- Crucial to have independent measurements

Figure 5: ATLAS particle detection

Experimental setup: Timeline

LHC long term schedule (always subject to change):

Past 7 years: CMS and ATLAS physicists have been recording and analyzing Run 2 data: ≈ 138 – 139 fb⁻¹ recorded per detector - About 4000 HH pairs via GF (SM) per experiment!

Motivation

2 Experimental results

- Experimental setup
- SM and EFT
- Resonant searches

3 HL-LHC Projections

Conclusions and outlook

SM and EFT: HH decay modes

- Many HH final states to consider!
- ► Highest SM branching ratio: HH→bbbb, ≈ 34%, but large QCD multijet background
- Other channels like $bb\gamma\gamma$, branching ratio $\approx 0.3\%$, but **good discrimination** from background from $H \rightarrow \gamma\gamma$ signature
- Exploring many channels is vital to make use of different detector signatures, and combine to improve overall sensitivity

Figure 6: HH branching ratios

CMS

Non-resonant Higgs Pair Production

- In addition to direct SM search, a model-independent search for new physics can be performed using an EFT (Effective Field Theory) alteration of the SM lagrangian
- Allows for BSM search over large range of scenarios

$$\mathcal{L}_{BSM} = -\kappa_{\lambda} \lambda_{HHH}^{SM} v H^{3} - \frac{m_{t}}{v} (\kappa_{t} H + \frac{c_{2}}{v} H^{2}) (\bar{t}_{L} t_{R} + h.c.) + \frac{\alpha_{S}}{12\pi v} (c_{g} H - \frac{c_{2g}}{2v} H^{2}) G_{\mu\nu}^{a} G^{a, \mu\nu}$$

$$\kappa_{\lambda} = \frac{\lambda_{HHH}}{\lambda_{HHH}^{SM}}, \ \lambda_{HHH}^{SM} = \frac{m_{H}^{2}}{2v^{2}}, \ \kappa_{t} = \frac{y_{t}}{y_{t}^{SM}}, \ y_{t}^{SM} = \frac{\sqrt{2}m_{t}^{2}}{v}$$

Effective Field Theory Parameterized BSM Lagrangian

Similarly, can parameterize the couplings of VVH, VVHH:

Figure 7: VBF HH diagrams

• SM:
$$\kappa_{2V} = \kappa_V = 1$$

 By forming EFT parameterization, can scan anomalous values of couplings as wide BSM searches

SM and EFT: HH $\!\!\rightarrow\!\! bbbb$

CMS Run 2 search, gluon fusion results [CMS-HIG-PAS-20-005]:

- Separate large QCD and tt backgrounds from HH with data-driven method (CR) and BDT
- ▶ 95% CL upper limit on SM XS: 3.6 times the standard model value
- Constrain self-coupling between [-2.3, 9.4] at 95% CL

Abraham Tishelman-Charny (NEU)

HH: Experimental Overview

SM and EFT: VBF HH $\!\!\!\rightarrow \!\!\!\! bbbb$

• CMS (boosted) and ATLAS VBF searches, sensitive to κ_V, κ_{2V} :

• CMS: Observed constraint $[0.62 < \kappa_{2V} < 1.41]$ First $> 5\sigma$ exclusion of $\kappa_{2V} = 0 \rightarrow$ Must have VVHH coupling in nature!

SM and EFT: ${\rm HH}{\rightarrow}{\rm bb}\gamma\gamma$

• In the bb $\gamma\gamma$ channel, take advantage of narrow and clean H $\rightarrow \gamma\gamma$ invariant mass:

Both CMS and ATLAS fit their background-only hypothesis models to diphoton mass around 125 GeV, to search for a **bump** from HH→bbγγ

Abraham Tishelman-Charny (NEU)

SM and EFT: ${\rm HH}{\rightarrow}{\rm bb}\gamma\gamma$

• CMS: observed (expected) $\frac{\sigma_{HH}}{\sigma_{SM}^{SM}} < 7.7$ (5.2) at 95% CL

► ATLAS: observed (expected) $\frac{\sigma_{HH}}{\sigma_{HH}^{SM}} < 4.2$ (5.7) at 95% CL

- Can perform SM search while simultaneously searching for BSM contributions via EFT framework - obtain different anomalous signal models by reweighting with GEN info
- CMS c2 constraint: $[-0.6 < c_2 < 1.1]$

SM and EFT: HH \rightarrow bb $\tau\tau$

- $bb\tau\tau$ final state analyzed with Run 2 data by both experiments
- Both consider \geq 1 hadronically decaying au and make use of ML:

CMS: observed (expected) ^σHH/σSM/σ^{HH}/σSM/_{HH} < 3.3 (5.2) at 95% CL
 ATLAS: observed (expected) ^σHH/σ^{SH}/_{HH} < 4.7 (3.9) at 95% CL

SM and EFT: ATLAS Run 2 Combination

ATLAS Run 2 combination [ref.] produced, where bbγγ and bbττ results are combined:

- Higgs self coupling modifier constrained at 95% CL to: [-1 < κ_λ < 6.6] observed, [-1.2 < κ_λ < 7.2] expected
- Combining channels improves sensitivity!

Abraham Tishelman-Charny (NEU)

SM and EFT: CMS channel comparisons

- CMS has analyzed several HH channels with the Run 2 datasets
- Comparing upper limits between channels gives an idea of per-channel and overall sensitivity:

- ▶ VBF bbbb boosted excludes the scenario $\kappa_{2V} = 0$ with $> 5\sigma$ significance, implying VVHH coupling in nature
- Similar GF sensitivities for bb $\gamma\gamma$, bb $\tau\tau$, bbbb. Observed upper limits \approx 3-5 X SM

Motivation

2 Experimental results

- Experimental setup
- SM and EFT
- Resonant searches

3 HL-LHC Projections

Conclusions and outlook

Resonant searches

Reminder: can search for BSM scenarios, such as those predicting a heavy resonance coupling to Higgs can be searched for via Higgs pair production:

Figure 8: Heavy resonance to two Higgs

- Still looking for HH, but expect kinematic changes depending on mass of resonance
- Can apply similar analysis strategies to SM/EFT searches for particular final states

Abraham Tishelman-Charny (NEU)

HH: Experimental Overview

Resonant searches: Spin 0/2 resonance

- Resonant higgs pair production BSM example: Warped Extra Dimensions (WED)
- Search for heavy resonant particle: Graviton
- Predicted by Kaluza–Klein models offer solution to hierarchy problem
- Can search via decays to SM higgs bosons

Figure 9: Warped extra dimensions: [arXiv:1404.0102]

Resonant searches: Spin 0/2 HH \rightarrow bbbb

- ATLAS X→HH→bbbb: Can see different reconstructed HH invariant masses from simulation
- Higher resonant mass, more discrimination from data
- Balance of this, production cross section and data efficiency determines expected sensitivity

Figure 10: Reconstructed invariant mass of HH

With higher masses, expect more co-linear daughter particles. Multiple topologies to consider:

FIG. 7. Illustration of the three high-tag categories (4b, 3b, and 2b) with the corresponding low-tag categories used to estimate the multijet background (2b-2f, 2b-1f, and 1b-1f). Teal cones represent large-R jets, yellow cones represent associated b-tagged trackjets, and white cones represent associated untagged track-jets. For H candidates with more than two associated track-jets, only the two with the highest p_T are considered.

Figure 11: Boosted and resolved HH \rightarrow bbbb topologies

- Also need to account for cases in which a b quark jet is faked
- Considering multiple topologies increases signal sensitivity

Resonant searches: Spin 0/2 HH \rightarrow bbbb

Spin 0/2 HH to 4b results:

(a) CMS Spin-0 [ref.]

(b) ATLAS Spin-2 [ref.]

- Searches in both boosted and resolved topologies searched
- ▶ CMS: Tag boosted H→bb as one large jet with machine learning
- CMS excludes narrow width Spin-0 Radions with masses 1 2.6 TeV. ATLAS excludes R.S. Gravitons from 298 - 1460 GeV.

Abraham Tishelman-Charny (NEU)

HH: Experimental Overview

Resonant searches: Spin 0/2 HH→Multilepton

- CMS Spin 0/2 HH to multilepton (Leptonic bbWW and $bb\tau\tau$) [ref.]:
- Λ_R : Ultraviolet cutoff. \tilde{k} proportional to extra dimension curvature over planck mass.

Considering similar final states can add sensitivity to analysis with similar strategy. Exclude Spin-0 radions with mass $<\approx 2.25 TeV$

ATLAS spin-0 combination [ref.]:

Local p-value corresponding to 3.2σ at 1.1 TeV, however, accounting for look-elsewhere effect, global p-value becomes 2.1σ.

Resonant searches: NMSSM

- MSSM: Minimal extension to make SM supersymmetric. Predicts additional higgs bosons. Phase space mostly excluded at LHC.
- NMSSM: Next to Minimal Supersymmetric Standard Model, predicts additional higgs bosons. Phase space largely unconstrained at LHC.

- Predicts heavy higgs decaying to SM and additional BSM higgs
- In similar sense to Spin 0/2 searches, natural extension of HH searches.

Abraham Tishelman-Charny (NEU)

Resonant searches: NMSSM bbbb

- CMS NMSSM bbbb: [ref.]
- Scan mass range: Heavy higgs (0.9-4 TeV), second BSM higgs (60-600 GeV)

- Look at **boosted** topology, two large jets. Higher expected discrimination for large mass discrepancies
- Able to exclude small portion of mass window

Abraham Tishelman-Charny (NEU)

HH: Experimental Overview

CMS

► CMS NMSSM bbττ [ref.]:

Neural network used to discriminate signal and background

- ▶ Able to exclude \approx [400 < m_H < 600] GeV \cap [50 < m_{h_S} < 250]
- Different HH final states exclude different regions of 2d mass space

Abraham Tishelman-Charny (NEU)

Motivation

2 Experimental results

- Experimental setup
- SM and EFT
- Resonant searches

8 HL-LHC Projections

Conclusions and outlook

LHC Run 3 will be the final run of the LHC:

LS3 (Long shutdown 3), LHC will upgrade to HL-LHC. CMS and ATLAS will undergo major upgrades for higher inst. luminosity, harsher data-taking conditions.

HL-LHC Projections

- ▶ Pros: Higher luminosity dataset, expect ≈ 3000 fb⁻¹. More data w.r.t LHC, and therefore more sensitive search about 93,000 HH pairs!
- **Cons:** Huge pileup \approx 140 simultaneous interactions!!

Figure 12: HL-LHC simulated event with 140 concurrent interaction vertices

	Statistical-only		Statistical + Systematic	
	ATLAS	CMS	ATLAS	CMS
$HH \rightarrow b\bar{b}b\bar{b}$	1.4	1.2	0.61	0.95
$HH \rightarrow b\bar{b}\tau^{+}\tau^{-}$	2.5	1.6	2.1	1.4
$HH \rightarrow b\bar{b}\gamma\gamma$	2.1	1.8	2.0	1.8
$HH \rightarrow b\bar{b}VV^*$	-	0.59	-	0.56
$HH \rightarrow b\bar{b}ZZ(4\ell)$	-	0.37	-	0.37
Combination	3.5	2.8	3.0	2.6
	4.5		4.0	

(a) Projected significance

Figure 13: CMS + ATLAS white paper: [ref.]

- Most recent projection combination: 4 sigma deviation from bkg. only hypothesis
- Combining HH channels and experiments will be crucial for maximizing potential for HH discovery at HL-LHC

Abraham Tishelman-Charny (NEU)

HH: Experimental Overview

HL-LHC Projections: Future studies

- Some channels updated, added:
- Important caveats to HL-LHC projection results:
 - Cannot make use of any data-driven techniques
 - Do not have exact detector simulation yet
 - Do not have dedicated offline reconstruction optimizations:
 - E.g. energy regressions (corrections)
 - Dedicated analysis teams to investigate this future dataset, and think of creative ways to optimize the analysis!

HH channel	Significance (standard deviations)			
	ATLAS	CMS		
bbbb	0.61	0.95		
bbtt	2.1 2.8	1.4		
bbyy	2.0 2.2	1.8 2.16		
bbVV({{vv)	-	0.56		
bbZZ(4ł)	-	0.37		
WWγγ + ττγγ	-	0.22		

Figure 14: Updated significance table for HL-LHC projection

Motivation

- 2 Experimental results
 - Experimental setup
 - SM and EFT
 - Resonant searches

3 HL-LHC Projections

4 Conclusions and outlook

Conclusions

- Higgs boson used to:
 - Better understand SM
 - Hunt for BSM
 - Both can be explored with Higgs pair production
- The Run 2 dataset delivered by LHC to CMS and ATLAS has resulted in a vast collection of results:
 - Upper limit on di-Higgs production around 3-4 times the standard model with sensitive individual channels - would expect a combination to improve
 - Ruling out BSM scenarios via EFT and resonant interpretations, including absence of VVHH
- Current HL-LHC projections predict at least a 4σ excess of HH events. Expect improvement from:
 - Data-driven techniques
 - More HH channels
 - Lessons to be learned during Run 3

- Commissioning for LHC Run 3 is ramping up
- Expect:
 - ▶ $\sqrt{s} = 13.6$ TeV, integrated lumi around 250 fb⁻¹, \approx double the Run 2 data!

Figure 15: First 6.8 TeV squeezed beams!

Thank you for your attention!

Higgs discovery per channel significance's:

Ta	bl	e	6

The expected and observed local *p*-values, expressed as the corresponding number of standard deviations of the observed excess from the background-only hypothesis, for $m_{\rm H}=1255$ GeV, for various combinations of decay modes.

Decay mode/combination	Expected (σ)	Observed (σ)
YY	2.8	4.1
ZZ	3.8	3.2
$\tau \tau + bb$	2.4	0.5
$\gamma \gamma + ZZ$	4.7	5.0
$\gamma \gamma + ZZ + WW$	5.2	5.1
$\gamma \gamma + ZZ + WW + \tau \tau + bb$	5.8	5.0

Search channel	Dataset	m _{max} [GeV]	$Z_l[\sigma]$	$E(Z_l)[\sigma]$
$H \rightarrow ZZ^{(*)} \rightarrow 4\ell$	7 TeV	125.0	2.5	1.6
	8 TeV	125.5	2.6	2.1
	7 & 8 TeV	125.0	3.6	2.7
$H \rightarrow \gamma \gamma$	7 TeV	126.0	3.4	1.6
	8 TeV	127.0	3.2	1.9
	7 & 8 TeV	126.5	4.5	2.5
$H \to WW^{(*)} \to \ell \nu \ell \nu$	7 TeV	135.0	1.1	3.4
	8 TeV	120.0	3.3	1.0
	7 & 8 TeV	125.0	2.8	2.3
Combined	7 TeV	126.5	3.6	3.2
	8 TeV	126.5	4.9	3.8
	7 & 8 TeV	126.5	6.0	4.9

(a) CMS significance's

► Z_{ℓ} : Local significance

(b) ATLAS significance's

- $G^{a}_{\mu\nu}$ is the gluon field strength tensor
- κ_λ measure of deviation of Higgs boson trilinear coupling from its SM expectation λSM_{HHH}
- κ_t measure of deviation of coupling between Higgs bosons and two top quarks from its SM expectation ySM_t
- \triangleright c_2 coupling between two Higgs bosons and two top quarks
- \triangleright c_g coupling between one Higgs bosons and two gluons
- \triangleright c_{2g} coupling between two Higgs bosons and two gluons

Higgs branching ratios

Figure 16: Extended Higgs branching ratios vs. Higgs mass [ref.]

Resonant searches: 2016-only Spin 0/2 results

- CMS
- Search for heavy resonance from WED theory has been performed by CMS and ATLAS:

Figure 17: Resonance searches with 2016 data

- No heavy resonance observed, but can rule out models predicting certain masses, if upper limit is less than predicted value.
- Combining HH channels increases sensitivity!

Abraham Tishelman-Charny (NEU)

HH: Experimental Overview