

Inner tracking for inner beauty

Abraham Tishelman-Charny

Tuesday, 2 April 2024 SLAC: Fundamental Physics Directorate seminar

Who am I?

- Abraham (Abe) Tishelman-Charny
- 1994: Born in Manhattan, NY
- 2016: B.S. in Physics: Stony Brook University
- 2022: PhD from Northeastern University on the CMS experiment (Boston, then 4 years at CERN)
- 2022: Started as a postdoc at Brookhaven National Laboratory:
 - Experimental particle physics

Outline

- I. The SM and Higgs boson
- II. The ITk strips detector
- III. Future prospects

Next section

I. The SM and Higgs boson

II. The ITk strips detector

III. Future prospects

The standard model

- What do we know? What is our theoretical basis?
- The **Standard Model** (SM) of particle physics:
 - Defines elementary particles, and their interactions
- Extremely successful! Predicts **vast majority** of observed phenomena

The Higgs boson

- **Higgs potential** determines nature of Higgs interactions with **other particles**
- Intertwined with electroweak symmetry breaking - process by which particles acquire mass
- Coupling lacking a precise measurement:
 Higgs self-coupling (λ)
 - Determines magnitude of Higgs interaction with itself, shape of the Higgs potential
- Has SM prediction we can compare to

Higgs potential and mechanism

$$V(h) = V_0 + \frac{\lambda}{2}v^2h^2 + \frac{\lambda}{2}vh^3 + \frac{1}{4}\frac{\lambda}{4}h^4 + \dots$$

The Higgs boson

- The **Higgs boson**: Theorized in the **1960s**
- Experimentally observed in 2012!
- Made expected splash in the scientific community
- Also made international news!

The New York Times

Physicists Find Elusive Particle Seen as Key to Universe

H Share full article

Scientists in Geneva on Wednesday applauded the discovery of a subatomic particle that looks like the Higgs boson. Pool photo by Denis Balibouse

By Dennis Overbye July 4, 2012

Characterizing the Higgs

- What do you do after observing a new particle?
- You characterize it, and compare to theory
- Since 2012, precise measurements of couplings, mass, spin, width, CP
- Came a long way, but want to:
 - Measure more, e.g. the Higgs self-coupling
 - Improve precision on all measurements

Higgs pair production

Can directly access Higgs self-coupling via Higgs pair production (HH):

Gluon fusion:

- Leading production mode
- Access to self-coupling
- σ_{NNLO, FTapprox} ~ **31.05 fb** @ 13 TeV,
 m_μ = 125.0 GeV [1803.02463]

Vector boson fusion:

- Subleading production mode
- Access to self-coupling, κ_{2V} , κ_{V}
- Quarks in final state
- σ_{N3L0} QCD ~ **1.73 fb** @ 13 TeV, m_H = 125.0 GeV
 [1811.07906]

- Self-coupling affects cross-section and differential distributions
- <u>Rare processes</u> need final states with good signal to background. Would benefit from more data!

HH final states

- Higgs boson has many decay modes
- Therefore, many **HH** decay modes
- Most common: H→bb (and HH→bbbb) (~58% at 125 GeV)
- Final states have different likelihoods, leave different detector signatures

3	bb	ww	ττ	ZZ	YY
bb	34%				
ww	25%	4.6%			
ττ	7.3%	2.7%	0.39%		
ZZ	3.1%	1.1%	0.33%	0.069%	
YY	0.26%	0.10%	0.028%	0.012%	0.0005%

Next section

I. The SM and Higgs boson
II. The ITk strips detector
III. Future prospects

LHC

- Need machine capable of producing particles we want to study in abundance:
- Collides protons, heavy ions. pp collisions at 7, 8, 13, now 13.6 TeV
- Has **four detectors** stationed: ALICE, ATLAS, CMS, LHCb

(only **ATLAS & CMS** geared towards Higgs physics)

LHC

• Need **machine** capable of producing particles we want to study **in abundance**:

10

ATLAS

- Different layers detect different particles (needed for different final states!)
- Requires use of different detector technologies → Need to choose wisely considering cost and size
- **Reconstruct** physics **event** by working backwards from detector information
- Need almost hermetic detector to reconstruct all final states, gets stats for rare processes

evelopment and Evaluation of Novel. Large Are: ladiation Hard Silicon Microstrip Sensors for the TLAS ITK Experiment at the HL-LHC

High-Luminosity LHC

- 2029: LHC will finish upgrade to <u>High Luminosity LHC</u> - ready to deliver collisions to experiments
- <u>Pro:</u> Will increase ATLAS + CMS datasets by ~ factor of 20
- <u>Con:</u> Extremely challenging data-taking environment
 - Extensive detector upgrades in progress to handle this

12

LHC: Pileup of 25

Silicon based tracking

- Particle hits silicon
- Electric signal read out
- Series of hits forms a **track**
- Use radius to measure particle momentum
- Orient geometry based on magnetic field

Silicon trackers actively used by ATLAS and CMS!

The ATLAS ITk Layout

• Part of ATLAS upgrade: Replace tracker with full silicon pixel and strip sub-detectors - The ITk (Inner Tracker):

Detect particles at the **<u>strip</u> level**. Two flavors of **barrel** sensors:

SS/LS: 4/2 rows of 1280 strips in same amount of area.

Hybrids

- Need to <u>read out each strip</u>
- Hybrid: Flex PCB glued onto sensors
- Hosts ASICs, called the ABCStar:
 - Hybrid hosts 7-12 ABCStars, depending on hybrid/sensor flavor - read out in star configuration
- Wire-bonded to strips for individual readout!

Powerboards

- Need to power ASICs on hybrid
- Accomplished via a **powerboard** PCB housing various components:

DC-DC converter

- 11V input, 1.5V output
- 110 μm Al shield to prevent EM noise leakage

Measurement and control

- Autonomous Monitoring and Control (AMAC) chip
- Enable/Disable DCDC
- Measure voltage, current, temperature

HV filter

- Includes a GanFET (Gallium Nitride Front End Transistor)
- Allows isolation of failed sensor in breakdown connected to the same HV

line

Modules

• Let's put it all together! Define this as a **module**:

Side view

Birds-eye view

All module flavors

Need appropriate module geometries to make up petals (endcap) and staves (barrel):

20

• Module QC tests are performed after **each assembly step**:

• Module QC tests are performed after **each assembly step**:

Aluminum strip attached to metal backplane

• Module QC tests are performed after **each assembly step**:

• Module QC tests are performed after **each assembly step**:

Stitch bonding step for **R3-5** modules only:

• Module QC tests are performed after **each assembly step**:

2024 JINST 15 P09004 [arXiv:2401.17054]

Completed

module!

Module QC setup

• To perform these steps, need a robust and complete setup!

Example module testing setup

- Coldbox (Modules go in here)
- Chiller (temp control)
- Dry air flow (humidity control)
- Power supplies to power electronics, bias sensors
- FPGA + PC for DAQ
- Raspberry pi: Environment monitoring

Module QC coldbox at BNL

Inside the coldbox:

- Up to four modules
- Dry air rig (minimize humidity)
- Air flow meter (monitor)
- Module side LV, HV, data lines
- Box side LV, HV, data lines

Module IV

- Modules must be operational up to -500 volts
- First electrical test of a module: IV curve
 - Increase voltage in steps of -10V, measure sensor current

Bonded

Module electrical test

- Modules must exhibit acceptable noise
- Bias sensor at -350V, inject test charges, measure gain, noise

Can accept module with max 2% of channels failed

Bonded

Metrology

IVVisual

Module thermal cycling

- Expect modules to experience temperature changes during operation (~ 1 expected time per year from year end shutdown)
- Emulate this effect with thermal cycling
- Define one thermal cycle as:
 - Start cold
 - Take noise measurement
 - Go warm
 - Take noise measurement
 - Go cold
 - Take noise measurement
- Module must undergo 10 thermal cycles and have passing noise and IV afterwards

Module thermal cycling example

- Example set of ten thermal cycles
- Cycled four modules simultaneously
- Noise and IVs after TC looked good

Extreme thermal cycling

- Say modules good after 10 TCs. How much headroom do we have? Were they going to fail on the 11th cycle?
- To start answering this question, TC'd
 3 modules 101 times
- Varied number of cycles per day, in total 16 days of cycling

Day	Module 1	Module 2	Module 3
1	0	4	4
2	6	6	6
3	8.5	8.5	8.5
4	8.5	8.5	8.5
5	7.5	7.5	7.5
6	6	6	6
7	4	4	4
8	9.5	9.5	9.5
9	5.5	5.5	5.5
10	2	2	2
11	7	7	7
12	6	6	6
13	10	10	10
14	8.5	8.5	8.5
15	7	7	7
16	5	5	5
Total thermal cycles	101	105	105

Extreme TC: Noise

Input noise (intrinsic to sensor) measured at first and final <u>cold</u> DAQ tests:

- Noise a bit above room temperature target during first cold tests (target of 824 e⁻)
- After cycling, almost all channels within ~5% of initial noise
- A few noisy strips on Module 1 edge and certain Module 2/3 regions
 - Modules are mostly operational

Stave testing setup at BNL

- After passing, load onto stave/petal
- Need to check **unaffected** from **loading**!
- No well-defined QC procedure yet, but have setup

Example stave testing setup

- Coldbox (Stave inside)
- Chiller (temp control)
- Dry air (humidity control)
- Power supplies to power electronics, bias sensors
- FPGA for DAQ
- Raspberry pi: Environment monitoring

Stave coldbox

Inside the coldbox:

• One stave

Stave coldbox

Inside the coldbox:

- One stave
- Dry air flow (minimize humidity)
- Coolant inlet/outlet (temperature control)
- LV/HV connector
- End Of Substructure (EOS) card for data readout

Stave electrical test

- Can take noise measurement of all modules simultaneously
- Example noise measurement for **one stave side** (14 modules)
- X-axis ranges: 300-1100 ENC
- Expected shape near DCDC coil
- Flat, ~ 900 ENC. Considered healthy noise for Long Strip stave based on expected signal to noise

Noise [ENC] xmin/max of each: **300/1100** ³²

Stave TC

- Also plan to thermal cycle staves a number of times (number undefined, at least once)
- Will compare noise **before** and **after** thermal cycling, just like for module TC
- In this example, TCd stave to inlet/outlet avg. temperature = -35°C 5 times
- Noise looks very similar before/after

Noise [ENC] xmin/max of each: **300/1100** ³³

Module Number:

Production status

- During pre-production, module I-Vs with breakdown on staves (Not off stave!)
- Upon investigation, found sensors **fracturing** during stave TC

Production status

- During pre-production, module I-Vs with **breakdown on staves** (Not off stave!)
- Upon investigation, found sensors **fracturing** during stave TC

Production status

- During pre-production, module I-Vs with breakdown on staves (Not off stave!)
- Upon investigation, found sensors fracturing during stave TC
- Understanding: Due to CTE mismatch, close proximity of hybrid and powerboard.
- Module production halted while we try mitigation strategies, possible solutions

Next section

I. The SM and Higgs boson
II. The ITk strips detector

III. Future prospects

Comparison to Run 2 tracker

- How does ITk compare to current tracker?
- All silicon tracker
- Extend pseudorapidity range from $|\eta| = \pm 2.5$ to $|\eta| = \pm 4$!

ATL-PHYS-PUB-2018-033

Review: Bottom quarks

- The bottom (or beauty) quark: Relatively heavy
- Propagates before hadronization: **b-jet**
- Distinctly different signature! Can use to differentiate from "lighter" jets

Projected HH \rightarrow **bbbb**

- Why did we do all of this work to upgrade the tracker?
- Projected significance of HH→bbbb channel as function of b-tagging efficiency
- If we can improve b-tagging, combine with other H(bb) channels, can increase HH discovery chances
- This depends on a robust ITk!

Projected HH combination

• And if we combine HH channels with b-quarks? (All rely on an excellent detector!)

RN-

2019-007

European Strategy (2018)

- Combination of 5 HH channels, many based on partial Run 2 analysis strategy
- 50% precision on self-coupling
- 4σ SM HH significance (ATLAS+CMS)

Recent ATLAS update (2022)

- 50% precision on the self-coupling with just ATLAS!
- Assuming Run 2-level b-tagging

Summary

- Since Higgs discovery, extensive studies to characterize it as part of large ATLAS physics program
- These studies will greatly benefit from increased dataset at HL-LHC
- This will require a **robust, performant detector** that can succeed in a **challenging data-taking environment**
- ITk project ongoing, will be part of ATLAS at HL-LHC. Examples shown for ITk strips:
 - Well-defined Quality Control program defined
 - Excellent test setups required to ensure QC of ITk components
 - **Extreme reliability tests** also performed to assess **headroom**, including **extreme thermal cycling**. 3 modules cycled **101 times**, still **work** afterwards
- The more **robust** the **ITk**, the **better the chance** of HH discovery at HL-LHC
 - Will give us better b-tagging, object reconstruction in general
 - Expect improvement in all physics analyses from increased dataset

Backup

Theoretical basis

Higgs decays

• Higgs decays as function of mass:

HH cross-sections

SM

- HH cross-sections a function of kl
- GF, VBF leading
- ttHH close to VBF, but much smaller than GF

LHC and ATLAS

ATLAS

- ATLAS detector
- One of two general purpose LHC detectors
- Rich physics program:
 - Higgs, Dark matter, Electroweak, Supersymmetry, ...

ATLAS

- Different **layers** detect different **particles** (needed for different final states!)
- Requires use of different detector **technologies**
- **Reconstruct** underlying physics **event** by working backwards from detector information

Review: Hadronization

- **Reminder:** In SM, **quarks cannot exist freely**. Must bind with other quarks
- When produced from Higgs decays, quarks separate and form **new pairs**, repeats

Module, stave distribution

• Barrel strip distributions among LS / SS:

	Layer	Radius	Strip pitch \times length	Staves	Modules	Hybrids	Channels	Sensor area
Short strin	LO	405 mm	$75.5\mu\text{m} imes24.16\text{mm}$	56	1,568	3,136	8.0M	15.0 m ²
onon strip	L1	562 mm	$75.5\mu m imes 24.16mm$	80	2,240	4,480	11.5M	21.4 m ²
l ona strip	L2	762 mm	$75.5\mu\text{m} imes48.35\text{mm}$	112	3,136	3,136	8.0M	30.0 m ²
Long ourp	L3	1000 mm	$75.5\mu\text{m}\times48.35\text{mm}$	144	4,032	4,032	10.3M	38.6 m ²
	Total			392	10,976	14,784	37.8M	105.0 m ²

ATLAS-TDR-025

ITk components

Table 5.1: Number of components for the ITk Strip Detector in barrel (top half) and end-cap (bottom half). The numbers for the barrel are for the full barrel with 2.8 m length. The numbers for the end-caps (EC) are given both for one and both end-caps.

Barrel Layer:	Radius [mm]	# of staves	# of modules	# of hybrids	# of of ABCStar	# of channels	Area [m ²]
LO	405	28	784	1568	15680	4.01M	7.49
L1	562	40	1120	2240	22400	5.73M	10.7
L2	762	56	1568	1568	15680	4.01M	14.98
L3	1000	72	2016	2016	20160	5.16M	19.26
Total half barrel		196	5488	7392	73920	18.92M	52.43
Total barrel		392	10976	14784	147840	37.85M	104.86
End-cap	z-pos.	# of	# of	# of	# of	# of	Area
Disk:	[mm]	petals	modules	hybrids	of ABCStar	channels	[m ²]
D0	1512	32	576	832	6336	1.62M	5.03
D1	1702	32	576	832	6336	1.62M	5.03
D2	1952	32	576	832	6336	1.62M	5.03
D3	2252	32	576	832	6336	1.62M	5.03
D4	2602	32	576	832	6336	1.62M	5.03
D5	3000	32	576	832	6336	1.62M	5.03
Total one EC		192	3456	4992	43008	11.01M	30.2
Total ECs		384	6912	9984	86016	22.02M	60.4
Total		776	17888	24768	233856	59.87M	165.25

The ATLAS ITk Layout

• Part of ATLAS **upgrade**: Replacement of tracker with **full silicon pixel** and **strip** subdetectors - **ITk** (Inner Tracker):

ITk strips barrel

- Will contain 10,976 **modules** (individual detection unit)
- Need to build **robust** modules to last ~**10 years**!

Strips barrel layout

- The ITk strips barrel will be made of **four** layers
- Inner two layers: Higher granularity sensors
- Outer two layers: Lower granularity sensors

Layer	Radius [mm]	Channels in <i>φ</i>	Strip Pitch [µm]	Strip Length [mm]
0	405	28×1280	75.5	24.1
1	562	40×1280	75.5	24.1
2	762	56×1280	75.5	48.2
3	1000	72×1280	75.5	48.2

ATLAS-TDR-025

Cooling setup

• Cooling setup diagrams from **Punit Sharma**

Fig: Drawing of the cooling setup with a module on top

Strip detector sensor

- Example strip detector sensor components
 - (ITk strips barrel sensor thickness is 320 um)
- Active area (depleted region after biasing) ionized by charged particles

Silicon doping types

From: [reference]

Sensor quantities

Sensor quantities from TDR

Table 6.2: Overview of the number of silicon strip sensors per required shape with number of strip rows, channels and pitch for the ITk Strip Detector.

Sensor type	Number of sensors	Shape	Number of rows	Channels per sensor	Min/max pitch (µm)
Short-strips	3808	Square	4	5128	75.5
Long-strips	7168	Square	2	2564	75.5
		Ow			
EC Ring 0	768		4	4360	73.5/84
EC Ring 1	768		4	5640	69/81
EC Ring 2	768		2	3076	73.5/84
EC Ring 3	1536	· · · · · · ·	4	3592	70.6/83.5
EC Ring 4	1536	· · · · · ·	2	2052	73.4/83.9
EC Ring 5	1536		2	2308	74.8/83.6

71

Powerboards

• Image of powerboard without shield box

Brookhaven⁻ National Laboratory

Module

 Diagram of a short strip module from the TDR

Figure 5.3: Exploded view of a short-strip barrel module with all relevant components. Long-strip modules and end-cap modules feature the same component groups.
Thermal cycling example

Thermal cycling example:

TC sequence

	Setup	up Pre T/C Test		Initial cool Cold turn on down				T	Thermal	Cycle 1	í.	Thermal Cycle 2				9	Thermal	Cycle 3		Thermal Cycle 4				Thermal Cycle 5				
Chuck Temperature	Room	m temperature		cool to -35℃	-35°C			heat to +20°C	+20°C	cool to -35°C	- 35 ℃	heat to +20°C	+20 ℃	cool to -35°C	-35℃	heat to +20°C	+20°C	cool to -35°C	-35° C	heat to +20°C	+20 °C	cool to -35°C	- 35 ℃	heat to +20°C	+20 ℃	cool to -35°C	-35℃	
ITSDAQ Testing	PING	IV	TEST	IDLE		IV	TEST	SHUNT	IDLE	TEST	IDLE	TEST	IDLE	TEST	IDLE	TEST	IDLE	TEST	IDLE	TEST	IDLE	TEST	IDLE	TEST	IDLE	TEST	IDLE	TEST
HV Bias	OFF	-550V	-350V	OFF		-550V	550V -350V		OFF	-350V	OFF	-350V	OFF	-350V	OFF	-350V	OFF	-350V	OFF	-350V	OFF	-350V	OFF	-350V	OFF	-350V	OFF	-350V
HYBRID Power	OFF	ON		OF	OFF				ON																			
Module LV	OFF	ON			OFF	ON																						

	٦	Thermal	Cycle	6	Thermal Cycle 7				Thermal Cycle 8				Thermal Cycle 9				Thermal Cycle 10						Warm- up	Post T	C Module Test stabilisation	& HV	Warm- up	End of Module
Chuck Temperature	heat to +20°C	+20° C	cool to -35°C	-35°C	heat to +20°C	+20°C	cool to -35°C	-35℃	heat to +20°C	+20 ℃	cool to -35°C	-35° C	heat to +20°C	+20° ℃	cool to -35℃	-35° C	heat to +20°C	+20 ℃	cool to -35°C	-35°C		heat to +20°C		+20 ℃		heat to +22°C	+22 ℃	
ITSDAQ Testing	IDLE	TEST	IDLE	TEST	IDLE	TEST	IDLE	TEST	IDLE	TEST	IDLE	TEST	IDLE	TEST	IDLE	TEST	IDLE	TEST	IDLE	IV	SHUN	TEST	IDLE	TEST	HV stabilisation	IV	IDLE	
HV Bias	OFF	-350V	OFF	-350V	OFF	-350V	OFF	-350V	OFF	-350V	OFF	-350V	OFF	-350V	OFF	-350V	OFF	-350V	OFF	-550V	-3	50V	OFF		-350V	OF	۶F	
HYBRID Power		ON																OFF										
Module LV														С	N													OFF

Extreme TC: IV

• IV curves measured after 101 thermal cycles:

- Nominal QC: Require no breakdown above -500V
- Two sensor current begin to increase before reaching -500V, but have **large operational region**.

Stave IV

• Can take IV of all modules simultaneously

- In this case, no modules in breakdown
- Varied current magnitudes among modules, partially expected from light leakage

Stave TC

- Also plan to thermal cycle staves a number of times (number undefined, at least once)
- Will compare noise **before** and **after** thermal cycling, just like for module TC
- In this example, TCd stave to inlet/outlet avg. temperature = -35°C 5 times
- Noise looks very similar before/after

Noise [ENC] xmin/max of each: **300/1100** ³⁶

Module Number:

Production status

• Electrical test results of suspected cracked module

