Probing the Higgs via pair production in the two W boson two photon channel at CMS: Past, present, and future

Abraham Tishelman-Charny Northeastern University: Thesis defense

Wednesday, 27 July 2022

Abraham Tishelman-Charny

Thesis defense: HH search at CMS

Outline

Introduction

Experimental setup

- f 3 Past: Run 2 search for Higgs pair production in the WW $\gamma\gamma$ channel
 - Theoretical background
 - Strategy
 - Signal and background modelling
 - Results
- Present: Run 3 ECAL trigger optimization and commissioning
- 5 Future: Phase II prospects for HH measurements at the HL-LHC

Introduction

Experimental setup

- 3 Past: Run 2 search for Higgs pair production in the WW $\gamma\gamma$ channel
 - Theoretical background
 - Strategy
 - Signal and background modelling
 - Results
- Present: Run 3 ECAL trigger optimization and commissioning
- 5 Future: Phase II prospects for HH measurements at the HL-LHC

Introduction: Higgs discovery

2012: The Higgs boson is experimentally discovered by the CMS and ATLAS collaborations [PLB 716 (2012) 30], [PLB 716 (2012) 1-29]:

CERN: July 4th 2012

Final missing particle of the Standard Model (SM) experimentally discovered

• "Golden" channels for discovery: $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ \rightarrow 4\ell$

Introduction: The Standard Model

- Standard model (SM): A Quantum Field Theory, most successful theory of particle physics to date. Agrees with the vast majority of observation
- Predicts particles and forces
- Successful but incomplete: Does not define mechanism for gravitational force, neutrino mass \rightarrow Part of motivation for Beyond the Standard Model **BSM** physics

three generations of matter interactions / force carriers (fermions) (bosons) ш ш =1.28 GeV/c2 ≃2.2 MeV/c¹ ≃173.1 GeV/c ≃124.97 GeV/c² charge н С t aluon higgs up charm top ar96 MeV/c? a4 18 GeV/d MeV/c³ -% b d S % SCALAR BOSO bottom photon down strange ≈0.511 MeV/c² ≃ 105.66 MeV/c² ≃1.7768 GeV/c² ~91.19 GeV/c⁴ SNC е τ Z μ electron tau Z boson muon EPTONS <1.0 eV/c² <0.17 MeV/c² <18.2 MeV/c² ≃80.39 GeV/cⁱ ±1 Vτ W electron muon tau W boson neutrino neutrino neutrino

Standard Model of Elementary Particles

Particles described by the SM

Introduction: What's next?

- Following the discovery of a new particle, what are we interested in doing?
- Want to measure properties including mass and couplings to SM particles - fundamental to SM
- Can search for BSM physics, using Higgs as a bridge

Thesis defense: HH search at CMS

Introduction: Higgs discovery anniversary

▶ 4 July 2022: Scientific symposium marking 10 year anniversary

CERN: July 4th 2022

▶ In 10 years since discovery, Higgs has been extensively studied

Vast ongoing Higgs program, requires the proper experimental setup

Abraham Tishelman-Charny

Thesis defense: HH search at CMS

7

Introduction

Experimental setup

- $\fbox{3}$ Past: Run 2 search for Higgs pair production in the WW $\gamma\gamma$ channel
 - Theoretical background
 - Strategy
 - Signal and background modelling
 - Results
 - Present: Run 3 ECAL trigger optimization and commissioning
- 5 Future: Phase II prospects for HH measurements at the HL-LHC

Experimental setup: The LHC

- The LHC: Large Hadron Collider straddles the Swiss-French border near Geneva, Switzerland
- Circumference: 27 km (17 miles). Accelerates and collides particles with superconducting magnets

- Provides collisions to experiments: CMS, ATLAS, LHCb, ALICE
- Primarily proton-proton collisions

Abraham Tishelman-Charny

Thesis defense: HH search at CMS

Experimental setup: CMS

The CMS (Compact Muon Solenoid) experiment is a general-purpose particle detector, stationed on the LHC

- General purpose: Perform searches for Dark Matter, Supersymmetry, rare processes (including HH), precision measurements, b-physics, ...
- Dimensions 21m long, 15m high and 15m wide.

CMS is made of multiple layers in order to detect different particles: Inner silicon tracker, calorimeters, solenoid magnet, muon chambers

- Different particles and jets leave different signatures in the detector
- Crucial for the ability to detect the many Higgs final states

Experimental setup: The CMS ECAL

- CMS Electromagnetic Calorimeter (ECAL): EB (ECAL Barrel) and EE (ECAL Endcaps), made of 75,848 PbWO₄ (Lead Tungstate) crystals.
- Purpose: Precisely measure energies of electrons and photons, EM fractions of jets
- EM interacting particles strike crystals, scintillation light produced, EM showers reach back of crystal and detected by radiation tolerant photodetectors (APDs [Avalanche Photo Diodes] in EB and VPTs [Vacuum Photo Triodes] in EE).

• Designed with $H \rightarrow \gamma \gamma$ in mind

(a) ECAL Barrel

(b) Crystal and APD

(c) Half of one endcap

Experimental setup: Long term schedule

 \blacktriangleright Schedule: \approx 4 year runs separated by multi-year shutdown periods

- There is a long term plan, up to 2038!
- Past: Run 2 (2015-18)
- Present: Run 3 (2022-25)
- Future: HL-LHC (High luminosity LHC) (2029-2038)

Introduction

2 Experimental setup

- f 3 Past: Run 2 search for Higgs pair production in the WW $\gamma\gamma$ channel
 - Theoretical background
 - Strategy
 - Signal and background modelling
 - Results
- Present: Run 3 ECAL trigger optimization and commissioning
- 5 Future: Phase II prospects for HH measurements at the HL-LHC

Introduction

2 Experimental setup

3 Past: Run 2 search for Higgs pair production in the WW $\gamma\gamma$ channel

Theoretical background

- Strategy
- Signal and background modelling
- Results
- Present: Run 3 ECAL trigger optimization and commissioning
- 5 Future: Phase II prospects for HH measurements at the HL-LHC

Run 2 HH \rightarrow WW $\gamma\gamma$: Higgs self-coupling

CMS

- Part of SM: Higgs potential
- After electroweak symmetry breaking:

$$V(h) = V_0 + \lambda v^2 h^2 + \lambda v h^3 + \frac{1}{4} \lambda h^4 + \dots$$

$$\lambda = 0.13, v = 246 \; {
m GeV}$$

- Higgs interacts with itself and massive particles
- Self-coupling λ predicted by SM. Want to compare to experiment to see what nature has to say!

Higgs potential

Run 2 HH \rightarrow WW $\gamma\gamma$: Higgs potential stability

- CMS
- Higgs potential shape determines the higgs vacuum expectation value, and type of stability:

- Current measurements predict **meta-stable** minimum.
- Measurement of the higgs self-coupling would be a direct measurement of higgs potential, could verify or refute this

Abraham Tishelman-Charny

Thesis defense: HH search at CMS

- Higgs pair production: Production of two Higgs bosons in a single process - predicted by SM
- Direct access to Higgs self-coupling.

- Want to search for this process in data to confirm it exists
- Also allows for a measurement of this parameter

Run 2 HH \rightarrow WW $\gamma\gamma$: Higgs pair production

CMS

- Large contribution from box diagram
- Large **destructive interference**

(a) Diagram interference

(b) HH Production modes

- Higgs pair production is rare about 1000 times less likely to be produced compared to a single Higgs boson
- ► At a p-p collider, most likely process is **gluon-gluon fusion** ($\sigma_{HH}^{GF} \approx 31.05$ fb at 13 TeV)

performed using an EFT (Effective Field Theory) alteration of the SM lagrangian Allows for BSM search over large range of scenarios

►

$$\mathcal{L}_{BSM} = -\kappa_{\lambda} \lambda_{HHH}^{SM} v H^{3} - \frac{m_{t}}{v} (\kappa_{t} H + \frac{c_{2}}{v} H^{2}) (\bar{t}_{L} t_{R} + h.c.) + \frac{\alpha_{S}}{12\pi v} (c_{g} H - \frac{c_{2g}}{2v} H^{2}) G_{\mu\nu}^{a} G^{a, \mu\nu}$$

$$\kappa_{\lambda} = \frac{\lambda_{HHH}}{\lambda_{HHH}^{SM}}, \ \lambda_{HHH}^{SM} = \frac{m_{H}^{2}}{2v^{2}}, \ \kappa_{t} = \frac{y_{t}}{y_{t}^{SM}}, \ y_{t}^{SM} = \frac{\sqrt{2}m_{t}^{2}}{v}$$

In addition to direct SM search, a model-independent search for new physics can be

Effective Field Theory Parameterized BSM Lagrangian

Abraham Tishelman-Charny

Run 2 HH \rightarrow WW $\gamma\gamma$: EFT framework

Introduction

2 Experimental setup

- f 3 Past: Run 2 search for Higgs pair production in the WW $\gamma\gamma$ channel
 - Theoretical background
 - Strategy
 - Signal and background modelling
 - Results
- Present: Run 3 ECAL trigger optimization and commissioning
- 5 Future: Phase II prospects for HH measurements at the HL-LHC

- To search for rare HH process, search for H(WW), H(γγ) final state
 HH→WWγγ with Run 2 dataset
- Useful traits:
 - ► Relatively large SM branching ratio: Γ(H → WW) ≈ 22%
 - Clean $H \rightarrow \gamma \gamma$ signature
- All three final states of the W boson pair considered to maximize sensitivity

Branching ratios of HH final states

Run 2 HH \rightarrow WW $\gamma\gamma$: Strategy

- Main handle of search: $H
 ightarrow \gamma \gamma$
- Want to select events (proton-proton interactions) with a good di-Photon candidate (detected by ECAL)

(a) 2012 Higgs to $\gamma\gamma$ ${\bf event}$ display at CMS

(b) $H \rightarrow \gamma \gamma$ diagram

Select events with at least 2 highly energetic, isolated photon signatures

Abraham Tishelman-Charny

Thesis defense: HH search at CMS

In order to tag three WW final states, select CMS events with energetic (high p_T), isolated leptons and jets (detected by ECAL and rest of CMS detector):

Keep three final states orthogonal via number of leptons (1, 0, 2) for (SL, FH, FL) so that channels can be combined - avoid double counting events.

HH signal peaks at Higgs mass

Run 2 HH \rightarrow WW $\gamma\gamma$: Strategy

- HH search performed with resonant and continuum background components
- Want to define a region with a high signal to background ratio
- To maximize HH sensitivity, need to maximize separation of $H \rightarrow \gamma \gamma$ and continuum background from HH

CMS

- Apply standard photon, lepton, jet selections.
- ► Use a Multiclassifier Deep Neural Network to separate: HH, $H \rightarrow \gamma \gamma$, continuum background
- Use output score to categorize events into four DNN score categories

Semi-leptonic final state

Run 2 HH \rightarrow WW $\gamma\gamma$: Semi-leptonic DNN

- Perform training with:
 - Keras with Tensorflow backend
 - Feed-forward Neural Network
 - Backwards-Propagation
 - Multiclassifier DNN

- Input Variables:
 - Leading Photon: $\frac{E}{m_{\gamma\gamma}}$, $\frac{p_T}{m_{\gamma\gamma}}$, η , ϕ , Photon ID
 - Subleading Photon: $\frac{E}{m_{\gamma\gamma}}$, $\frac{p_T}{m_{\gamma\gamma}}$, η , ϕ , Photon ID
 - Leading Jet: E, p_T , η , ϕ , DeepJet bScore
 - **Subleading Jet**: E, p_T , η , ϕ , DeepJet bScore
 - Lepton: E, p_T , η , ϕ
 - Number of Jets
 - MET
 - M_T(lepton, MET)
 - $Invmass(jet_0, jet_1)$, $Invmass(jet_1, jet_2)$

Example DNN

Run 2 HH \rightarrow WW $\gamma\gamma$: Semi-leptonic DNN

- Train DNN on **simulation** to avoid bias from data, and optimize for HH signal
- Signal: Reweight HH signal events at LO to NLO from independent sample for training, Reweighted events model SM HH signal well

(a) Scaled Leading Photon p_T (b) Scaled subleading photon p_T

LO to NLO reweighted quantities

- Continuum background: Use simulation, improve modelling by applying 6-D kinematic reweighting, from important variables
- Single Higgs: Train on VH, ttH topologically better at faking SL HH

Abraham Tishelman-Charny

Run 2 HH \rightarrow WW $\gamma\gamma$: Semi-leptonic DNN

- CMS
- Separate events into training (90% stats) and test (10% stats) subsets
- Can evaluate DNN performance by checking ROC (receiver operating characteristic) curves:

DNN Training Performance

▶ No evidence of overtraining, ROC curves are similar for training and test sets

Run 2 HH \rightarrow WW $\gamma\gamma$: Semi-leptonic

 Variables related to semi-leptonic WWγγ topology are **important** for discrimination

Leading importance variables for HH node

Run 2 HH \rightarrow WW $\gamma\gamma$: Semi-leptonic

- Events with DNN score
 < 0.1 not used in analysis, due to very low signal to background ratio
- Relatively good agreement, DNN trained well to identify HH in data
- MC not used for signal and background modelling, only for DNN optimization. An y disagreement indicates suboptimal, but not biased, DNN

Run 2 HH \rightarrow WW $\gamma\gamma$: Semi-leptonic categorization

- Perform simultaneous optimization of category boundaries to maximize expected sensitivity
- Final DNN category boundaries drawn as vertical lines: [0.1, 0.63, 0.84, 0.89, 1.0]
- Relatively good agreement, expect DNN trained well to identify HH, H, continuum background processes in data
- Any disagreement indicates suboptimal, but not biased, DNN

Run 2 HH \rightarrow WW $\gamma\gamma$: Fully-hadronic

- Fully-hadronic final state: Major background is multi-jet QCD, model with data-driven method. Also have HH→bbγγ background
- Invoke dedicated bbγγ killer to remove bbγγ events
- ► Train separate binary DNN to separate HH→WWγγ signal from continuum background
- ► DNN separates HH→WWγγ signal well from backgrounds

Run 2 HH \rightarrow WW $\gamma\gamma$: Fully-leptonic

FL selection on di-lepton mass - removes VH background, preserves signal

Introduction

2 Experimental setup

- f 3 Past: Run 2 search for Higgs pair production in the WW $\gamma\gamma$ channel
 - Theoretical background
 - Strategy
 - Signal and background modelling
 - Results
- Present: Run 3 ECAL trigger optimization and commissioning
- 5 Future: Phase II prospects for HH measurements at the HL-LHC

Run 2 HH \rightarrow WW $\gamma\gamma$: HH, H modelling

- Same method used to model **HH** signal and $H \rightarrow \gamma \gamma$ resonant background
- Fit a sum of gaussians to histogram of di-Photon mass in signal region: 115 < m_{γγ} < 135 GeV
- Number of gaussians to use for fit determined by f-test function that best fits shape
- Same strategy for HH and H fitting followed for all final states and categories

Run 2 HH \rightarrow WW $\gamma\gamma$: Continuum modelling

CMS/

- Fit falling functions to data sidebands:
- Fit without using the data in the signal region to avoid bias (blinding)

Use this technique to model continuum background in signal region

Run 2 HH \rightarrow WW $\gamma\gamma$: Fit to data

- Uncertainties included:
 - Theoretical
 - uncertainties on HH and H XS, BR
 - Integrated luminosity and Trigger
 - Electron and muon reconstruction, ID and isolation efficiency
 - Photon ID, shower shape, energy scale, resolution
 - Jet energy scale and resolution
 - B-tagging
- 7 analysis categories combined, weighted by S/(S+B) per category
- What quantifiable results can we extract from this?

Introduction

2 Experimental setup

f 3 Past: Run 2 search for Higgs pair production in the WW $\gamma\gamma$ channel

- Theoretical background
- Strategy
- Signal and background modelling
- Results
- Present: Run 3 ECAL trigger optimization and commissioning
- 5 Future: Phase II prospects for HH measurements at the HL-LHC

Summary

Run 2 HH \rightarrow WW $\gamma\gamma$: SM results

- Not enough signal to claim evidence or discovery, but can set **upper limits** on *σ*_{HH}.
- Combined observed (expected) upper limit on HH production of 97 (52) times the SM prediction -3.0 (1.6) pb
- Observed upper limit raised by fully-hadronic state, from more events than expected around diphoton mass = 125 GeV
- More sensitive than cut-based ATLAS analysis with 2016 data: Upper limit of 7.7 (5.4) pb on SM HH production.

$$\mathcal{L}_{BSM} = -\kappa_{\lambda} \lambda_{HHH}^{SM} v H^{3} - \frac{m_{t}}{v} (\kappa_{t} H + \frac{c_{2}}{v} H^{2}) (\bar{t}_{L} t_{R} + h.c.) + \frac{\alpha_{S}}{12\pi v} (c_{g} H - \frac{c_{2g}}{2v} H^{2}) G_{\mu\nu}^{a} G^{a,\mu\nu} \\ \kappa_{\lambda} = \frac{\lambda_{HHH}}{\lambda_{HHH}^{SM}}, \ \lambda_{HHH}^{SM} = \frac{m_{H}^{2}}{2v^{2}}, \ \ \kappa_{t} = \frac{y_{t}}{y_{t}^{SM}}, \ \ y_{t}^{SM} = \frac{\sqrt{2}m_{t}^{2}}{v}$$

- By linearly combining NLO samples, can extract upper limit on a variety of κ_λ points from -30 to 30.
- Observed (expected) constraint on κ_λ of -25.8 (-14.4) to 24.1 (18.3) times SM value
- Observed constraint is not as tight as expected contraint due to fully-hadronic channel

$$\mathcal{L}_{BSM} = -\kappa_{\lambda} \lambda_{HHH}^{SM} v H^{3} - \frac{m_{t}}{v} (\kappa_{t} H + \frac{c_{2}}{v} H^{2}) (\bar{t}_{L} t_{R} + h.c.) + \frac{\alpha_{S}}{12\pi v} (c_{g} H - \frac{c_{2g}}{2v} H^{2}) G_{\mu\nu}^{a} G^{a,\mu\nu}$$

$$\kappa_{\lambda} = \frac{\lambda_{HHH}}{\lambda_{HHH}^{SM}}, \ \lambda_{HHH}^{SM} = \frac{m_{H}^{2}}{2v^{2}}, \ \kappa_{t} = \frac{y_{t}}{y_{t}^{SM}}, \ y_{t}^{SM} = \frac{\sqrt{2}m_{t}^{2}}{v}$$

- By linearly combining reweighted NLO samples, can extract upper limit on a variety of c₂ points from -3.5 to 3.5
- Observed (expected) constraint on c₂ -2.4 (-1.7) to 2.9 (2.2)
- Observed constraint is not as tight as expected constraint due to fully-hadronic channel

Run 2 HH \rightarrow WW $\gamma\gamma$: EFT benchmark results

- Set limits on EFT benchmark points maximum cross section of each process based on data
- Reweight NLO samples to 20 EFT benchmarks for addition BSM searches: [JHEP04(2016)126], [JHEP03(2020)091]
- Each benchmark: set of values for five EFT parameters. Example, Benchmark 1: {κ_λ, κ_t, c₂, c_g, c_{2g}} = {7.5, 1, -1, 0, 0}
- Observed (expected) range of 1.7 - 6.2 (1.0 - 3.9) pb. No significant excess of events observed

EFT benchmark number

Introduction

2 Experimental setup

- $\fbox{3}$ Past: Run 2 search for Higgs pair production in the WW $\gamma\gamma$ channel
 - Theoretical background
 - Strategy
 - Signal and background modelling
 - Results

Present: Run 3 ECAL trigger optimization and commissioning

5 Future: Phase II prospects for HH measurements at the HL-LHC

5 Summary

Run 3 optimization: Trigger path

- ECAL trigger sends energy sums to CMS Level-1 trigger at 40 MHz
 - Energy sums formed in ECAL on-detector electronics: Application-Specific Integrated Circuits (ASICs)
 - Through Trigger Concentrator Card, send to Level-1 (L1) trigger, form e/γ (Maybe from H→ γγ!), τ, jet candidates
 - If L1 trigger identifies interesting event, Level-1 accept signal sent to CMS to read out event to DAQ

Run 3 optimization: Spikes

- ▶ In EB, non-signal-like pulses called **spikes** are prevalent. They are:
 - Caused by the direct ionization of APDs
 - Generally isolated, high energy, and often out-of-time, as progenitors travel detector

Spike timing distribution

Spike contamination

- Have a L1 spike tagger that rejects many (but not all) spikes above 16 GeV updating working point for Run 3 provides additional rejection above this threshold.
- Fundamental to remove spikes
- There is room for improvement

- The basic building blocks of ECAL energy sums are **strips**
 - The energy in a 1x5 channel region, corresponding to an ECAL VFE (Very front end)
- Strip E_T values are computed in ASICs on the front-end card.

(a) Very Front End card

(b) Front of FE card with ASIC chips [ref.]

Run 3 optimization: Second energy sum

In ECAL electronics, have the possibility to compute two energy sums in parallel:

Double amplitude schematic

- Duplicates the data path
- Until now, second filter never used by ECAL
- Potential use of this new feature under investigation

Abraham Tishelman-Charny

Thesis defense: HH search at CMS

Run 3 optimization: Out-of-time tagging

- Strategy: Tune two energies: Have second filter return greater amplitude for out-of-time signals, if > first, kill signal or tag at L1.
- Possible advantages for physics:
 - Reduce spike rate at L1: Increase L1 rate for physics, including HH with photons and electrons, increase data yields
 - Potentially tag out-of-time signals such as those from Long Lived Particles (LLPs)

Simulated **spike timing distribution** and parts **tagged** by working points

0.014 fb⁻¹ (13 TeV)

Estimated performance on in-time EM signals and out-of-time spikes by re-emulating 2018 CMS data, with double energy sums in killing mode:

(a) Expected signal efficiency

Spike E₇ (GeV) (b) Expected spike rejection

6

10 12 14 16

- Results in the following expected performance for $E_T > 5$ GeV:
 - < 1% of energy subtracted from in-time EM signals
 - > 95% of energy subtracted from out-of-time spikes

Run 3 optimization: Commissioning

- 2021: Began starting LHC and CMS back up again!
- Good time to test new features

CMS control room

- July August 2021: Cosmic running with no magnetic field
- Start of October 2021: Cosmic running with magnetic field
- End of October 2021: LHC pilot beam, with beam splashes and low intensity collisions

Abraham Tishelman-Charny

Run 3 optimization: 2021 Beam Splashes

October 2021: CMS received beam splashes:

CMS Beam Splash event

- A beam splash occurs when the LHC proton bunch is redirected onto the beam collimators upstream of CMS, resulting in a shower of particles (chiefly muons) that traverse CMS.
- The red (ECAL) and blue (HCAL) portions represent calorimeter energy deposits

- Expect a timing spread from beam splashes
- Perfect time to test ECAL out-of-time tagging!

- The mechanism works in ECAL!
- **First instance** of in-situ out-of-time tagging at ECAL L1.

Run 3 optimization: Start of LHC Run 3

LHC Run 3 officially began 5 July 2022

Will continue investigating this feature to be used during LHC Run 3 to improve physics sensitivity - for HH and other processes

Introduction

2 Experimental setup

- 3 Past: Run 2 search for Higgs pair production in the WW $\gamma\gamma$ channel
 - Theoretical background
 - Strategy
 - Signal and background modelling
 - Results
 - Present: Run 3 ECAL trigger optimization and commissioning
- 5 Future: Phase II prospects for HH measurements at the HL-LHC

Summary

Phase II: HL-LHC pros and cons

- ► The LHC will be upgraded during LS3 (2026-28) to the HL-LHC in order to provide more luminosity to detectors. More data for analysis (≈ 90% of total)
- ▶ <u>Pros:</u> Higher luminosity dataset, expect ≈ 3000 fb⁻¹. More data w.r.t LHC, and therefore more **sensitive** search about **93,000 HH** pairs!
- ▶ <u>Cons:</u> Huge pileup ≈ 140 simultaneous interactions!!

HL-LHC simulated event with 140 concurrent interaction vertices

- **<u>LHC</u>**: Higgs discovery was a major goal
- HL-LHC: Higgs pair production discovery will be a major goal

Abraham Tishelman-Charny

Thesis defense: HH search at CMS

Phase II: HH \rightarrow WW $\gamma\gamma$ and $\tau\tau\gamma\gamma$ projections

- Analyzing current data, while keeping an eye on the future via projection studies - computation of expected results using simulation of physics processes in HL-LHC conditions
- Completed projection of HH \rightarrow WW $\gamma\gamma$ and HH $\rightarrow\tau\tau\gamma\gamma\gamma$:

Followed analysis strategy very similar to Run 2 analysis. Projected significance: 0.22 σ

• $WW\gamma\gamma+\tau\tau\gamma\gamma$ projection added by CMS:

HH Channel	ATLAS	CMS
bbbb	0.61	0.95
bb au au	2.8	1.4
$bb\gamma\gamma$	2.2	2.16
bbVV($\ell\ell u u$)	-	0.56
bbZZ(4 ℓ)	-	0.37
$WW\gamma\gamma+ au au\gamma\gamma$	-	0.22

Projected HH significance at HL-LHC

- No one channel expected to discover HH crucial to analyze many channels and combine
- A few caveats of projection results:
 - Cannot make use of any data-driven techniques
 - Do not have dedicated offline reconstruction optimizations: E.g. energy regressions (corrections)
 - Dedicated analysis teams to investigate this future dataset

Introduction

2 Experimental setup

- $\fbox{3}$ Past: Run 2 search for Higgs pair production in the WW $\gamma\gamma$ channel
 - Theoretical background
 - Strategy
 - Signal and background modelling
 - Results
 - Present: Run 3 ECAL trigger optimization and commissioning
- 5 Future: Phase II prospects for HH measurements at the HL-LHC

6 Summary

Abraham Tishelman-Charny

Thesis defense: HH search at CMS

27 July, 2022

60

Summary

- Higgs boson used to:
 - Better understand SM
 - Hunt for BSM
 - Both can be explored with Higgs pair production
- ► First CMS search for HH→WWγγ performed, observed (expected) upper limits extracted:
 - σ_{HH}: 97 (52) times SM prediction
 - Constraint on Higgs self-coupling: -25.8 (-14.4) to 24.1 (18.3) times SM value
 - Constraint on qqHH: -2.4 (-1.7) to 2.9 (2.2)
 - 20 EFT benchmarks: 1.7 6.2 (1 3.9) pb
- ▶ Precise and accurate detectors **imperative** for tagging final states. CMS ECAL vital for HH→WW $\gamma\gamma$, via H→ $\gamma\gamma$
- Investigating new feature for LHC Run 3: Out-of-time tagging at L1, to improve Run 3 physics sensitivity
- Future projection completed for HH \rightarrow WW $\gamma\gamma$ and $\tau\tau\gamma\gamma$ at HL-LHC: **0.22** σ

Summary

Thank you to the thesis committee: Professor Toyoko Orimoto, Chair Professor Emanuela Barberis Professor James Halverson Professor Darien Wood

Thank you for your attention!

Backup

Introduction: Higgs decay modes

- Advantage of the Higgs: Has many decay modes, handles for analysis
- Major factors in experimental analysis sensitivity:
 - Process branching ratio
 - Object reconstruction efficiency
 - Differentiation from backgrounds
- Different BSM searches with non 125 GeV Higgs may be more sensitive to certain final states

Higgs branching ratios vs. mass

CERN accelerator complex

CERN accelerator complex:

- Accelerates particles to high energies, collide to produce massive particles, study physical processes
- Final stage: LHC

CERN accelerator complex

Accelerates protons and heavy ions

Vertex efficiency

Selecting the highest sum p²_T vertex is within 0.1cm of the GEN level vertex > 99% of the time for the SL signal

SL vertex efficiency

- $G^{a}_{\mu\nu}$ is the gluon field strength tensor
- κ_λ measure of deviation of Higgs boson trilinear coupling from its SM expectation λSM_{HHH}
- κ_t measure of deviation of coupling between Higgs bosons and two top quarks from its SM expectation ySM_t
- \triangleright c_2 coupling between two Higgs bosons and two top quarks
- \triangleright c_g coupling between one Higgs bosons and two gluons
- \triangleright c_{2g} coupling between two Higgs bosons and two gluons

Cut #	Cut
1	(leadingPhoton.full5x5_r9 $>$ 0.8) or (leadingPhoton.egChargedHadronIso $<$ 20) or
	$\left(\frac{\text{leadingPhoton.egChargedHadronIso}}{\text{leadingPhoton.pt}} < 0.3\right) \text{ Leading } \gamma \text{ 5x5 dominates its cluster's energy deposit}$
2	(subLeadingPhoton.full5x5_r9 > 0.8) or (subLeadingPhoton.egChargedHadronIso < 20) or
	$\left(\frac{\text{subleadingPhoton.egChargedHadronIso}}{\text{subleadingPhoton.pt}} < 0.3 \right) \text{Subleading} \gamma \text{ 5x5 dominates its cluster's energy deposit}$
3	(leadingPhoton.hadronicOverEm < 0.08) and
	(subLeadingPhoton.hadronicOverEm < 0.08) Small associated hadronic deposits
4	(leadingPhoton.pt > 35.0) and
	(subLeadingPhoton.pt > 25.0) Pt thresholds
5	(leadingPhoton.superCluster.eta < 2.5) and
	(subLeadingPhoton.superCluster.eta $<$ 2.5) Superclusters in ECAL Pseudorapidity Range
6	(leadingPhoton.superCluster.eta < 1.4442) or
	(leadingPhoton.superCluster.eta $>$ 1.566) Avoid leading γ near ECAL transition (EB to EE)
7	(subLeadingPhoton.superCluster.eta < 1.4442) or
	(subLeadingPhoton.superCluster.eta $>$ 1.566) Avoid subleading γ near ECAL transition (EB to EE)
8	(leadPhotonId > -0.9) and
	(subLeadPhotonId $>$ -0.9) Loose ID cuts

Diphoton preselections

Run 2 HH \rightarrow WW $\gamma\gamma$: Common selections

Vertex:

▶ Use **0**th vertex (largest $\Sigma \rho_T^2$) of each event. Vertex efficiency w.r.t. GEN for $|\Delta Z| < 0.1 cm$ is > 99%

Photons:

► Select **energetic**, **isolated** photons: Leading (Subleading) photon $p_T > 35$ (25) GeV, $\Delta R (= \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2})$ with other objects > 0.4

Electrons:

$\begin{array}{|c|c|c|c|} Variable & Selection \\ \hline p_T \ [GeV] & > 10 \\ |\eta| & (0 < |\eta| < 1.442) \ or \ (1.566 < |\eta| < 2.5) \\ ID & Loose \ Cut \ Based \\ \Delta R(e^-, \gamma) & > 0.4 \\ \Delta R(track_e^-, SC_e^-) & > 0.4 \\ |m_{e^-\gamma} - 91.187| \ [GeV] & > 5 \\ \hline \end{array}$

Electron object requirements

Muons:

Variable	Selection
p_T [GeV]	> 10
$ \eta $	< 2.4
ID	Tight
$\Delta R(\mu, \gamma)$	> 0.4
$\Delta R(\mu, jet)$	> 0.4
ISO_{μ}	< 0.15

Muon object requirements

$$R_{iso} = \left[\sum_{\substack{charged \\ hadrons}} p_T + max(0, \sum_{\substack{neutral \\ hadrons}} p_T + \sum_{photons} p_T - p_T^{PU})\right] / p_T^{\prime}$$
(1)

Thesis defense: HH search at CMS

Jets:

Variable	Selection	
p_T [GeV]	> 25	
$ \eta $	< 2.4	
ID	Tight	
PU Jet ID	Loose	
$\Delta R(j,\gamma_l)$	> 0.4	
$\Delta R(j, \gamma_{sl})$	> 0.4	
$\Delta R(j, e^-)$	> 0.4	
$\Delta R(j,\mu)$	> 0.4	

Jet requirements

MET:

- Semi-Leptonic: No selection, input to DNN
- Fully-Leptonic: 20 GeV selection applied
- Fully-Hadronic: No selection

- Events fall into the (FH, SL, FL) category if they contain Exactly (0, 1, 2) leptons passing the above selections
- ► FH category requires at least 4 jets passing above jet selections

- Preselections remove vast majority of continuum and resonant backgrounds (>99%), but still large remaining yields (≈ 2-1000 events)
- ▶ Preserve ≈ 10-34% of HH signal events
- However HH signal yield very low, so will employ further techniques and selections for further signal over background optimization

Process	No selection	SL	FH FH	FL
$\gamma\gamma$ +jets	302978	542 (0.179%)	6247 (2.062%)	2.77 (0.001%)
$tt\gamma\gamma$	44.0507	11 (25%)	26 (58%)	0.149 (0.3%)
$tt\gamma+jets$	765	155 (20%)	155 (20%) 402 (53%)	
ttW+jets	5.04	- (-%)	2.8 (56%)	- (-%)
γ +jet	830909	1061 (0.002%)	2466 (0.002%)	- (-%)
QCD	1653618	- (-%)	- (-%)	- (-%)
tt+jets	23.56	3.34 (81%)	18.8 (55%)	- (-%)
W+1jet	5838	245 (0.329%)	- (-%)	- (-%)
W+2jets	5589	353 (0.343%)	204 (0.232%)	- (-%)
Total continuum	2812863	2371 (0.0008%)	9368 (0.0033%)	2.92 (0.0%)
$gg \rightarrow H \rightarrow \gamma \gamma$	2227	2.556 (0.115%)	18.39 (0.826%)	- (-%)
$ttH(\rightarrow \gamma\gamma)$	23.9	5.9 (25%)	14.42 (60%)	0.0545 (0.23%)
$qq \rightarrow H \rightarrow \gamma \gamma$	158	0.371 (0.235%)	1.068 (0.675%)	- (-%)
$VH(\rightarrow \gamma \gamma)$	85.55	10.05 (11.8%)	4.43 (5.2%)	0.0832 (0.097%)
Total H	2494	19 (0.0076%)	38 (0.015%)	0.14 (0.0001%)
SL HH \rightarrow WW $\gamma\gamma$	0.3042	0.1044 (34%)	- (-%)	- (-%)
FH HH \rightarrow WW $\gamma\gamma$	0.3012	- (-%)	0.0966 (32%)	- (-%)
FL HH \rightarrow WW $\gamma\gamma$	0.0741	- (-%)	- (-%)	0.0098 (13%)

Simulation yields with 2017 MC before and after preselections

Preselection yield details

MC Sample	Before preselection	SL (efficiency)	FH (efficiency)	FL (efficiency)
DiPhotonJetsBox_M40_80	1138.8964	- (-%)	- (-%)	- (-%)
DiPhotonJetsBox_MGG-80toInf	302977.6194	542.4641 (0.179%)	6246.9949 (2.062%)	2.7749 (0.001%)
DYJetsToLL_M-50	7525.2616	- (-%)	- (-%)	- (-%)
THQ_ctcvcp	3.4592	0.5789 (16.735%)	1.0579 (30.582%)	0.0012 (0.034%)
TTGG_0Jets	44.0507	10.9847 (24.936%)	25.6024 (58.12%)	0.1487 (0.338%)
TTGJets_TuneCP5	765.4892	154.6684 (20.205%)	402.1377 (52.533%)	- (-%)
TTToHadronic	903.4816	- (-%)	- (-%)	- (-%)
ttWJets	5.0469	- (-%)	2.8337 (56.147%)	- (-%)
W3JetsToLNu	1041.188	- (-%)	- (-%)	- (-%)
W4JetsToLNu	985.8018	- (-%)	- (-%)	- (-%)
WGGJets	534.8559	- (-%)	- (-%)	- (-%)
WGJJToLNu_EWK_QCD	367.5752	- (-%)	- (-%)	- (-%)
WGJJToLNuGJJ_EWK	65.3279	- (-%)	- (-%)	- (-%)
WWTo1L1Nu2Q	337.0574	- (-%)	- (-%)	- (-%)
WW_TuneCP5	189.1288	- (-%)	- (-%)	- (-%)
GJet	830909.3171	1061.0649 (0.002%)	2466.3582 (0.002%)	- (-%)
QCD	1653618.4935	- (-%)	- (-%)	- (-%)
TTJets	23.5628	3.3477 (81.397%)	18.8106 (55.121%)	- (-%)
W1Jet	5838.2419	245.2825 (0.329%)	- (-%)	- (-%)
W2Jets	5589.4864	352.6322 (0.343%)	204.2186 (0.232%)	- (-%)
Total	2812863.3417	2371.0234 (0.0008%)	9368.014 (0.0033%)	2.9248 (0.0%)

2017 Continuum Background MC before and after preselections for each final state, and process efficiency. Note that for processes with less than 1000 unweighted MC events after a selection (100 for the fully-leptonic preselections), a null value is shown.
Preselection yield details

MC Sample	Before preselection	SL	FH	FL
DiPhotonJetsBox_M40_80	0.0405%	-%	-%	-%
DiPhotonJetsBox_MGG-80toInf	10.7711%	22.8789%	66.6843%	94.8755%
DYJetsToLL_M-50	0.2675%	-%	-%	-%
THQ_ctcvcp	0.0001%	0.0244%	0.0113%	0.0397%
TTGG_0Jets	0.0016%	0.4633%	0.2733%	5.0849%
TTGJets_TuneCP5	0.0272%	6.5233%	4.2927%	-%
TTToHadronic	0.0321%	-%	-%	-%
ttWJets	0.0002%	-%	0.0302%	-%
W3JetsToLNu	0.037%	-%	-%	-%
W4JetsToLNu	0.035%	-%	-%	-%
WGGJets	0.019%	-%	-%	-%
WGJJToLNu_EWK_QCD	0.0131%	-%	-%	-%
WGJJToLNuGJJ_EWK	0.0023%	-%	-%	-%
WWTo1L1Nu2Q	0.012%	-%	-%	-%
WW_TuneCP5	0.0067%	-%	-%	-%
GJet	29.5396%	44.7513%	26.3274%	-%
QCD	58.7877%	-%	-%	-%
TTJets	0.0008%	0.1412%	0.2008%	-%
W1Jet	0.2076%	10.345%	-%	-%
W2Jets	0.1987%	14.8726%	2.18%	-%
Total	100%	100%	100%	100%

MC Sample	Before preselection	SL (efficiency)	FH (efficiency)	FL (efficiency)
GluGluHToGG	2226.7151	2.5556 (0.115%)	18.3933 (0.826%)	- (-%)
ttHJetToGG	23.8639	5.9022 (24.733%)	14.4288 (60.463%)	0.0545 (0.228%)
VBFHToGG	158.1456	0.3712 (0.235%)	1.0675 (0.675%)	- (-%)
VHToGG	85.5536	10.0542 (11.752%)	4.4384 (5.188%)	0.0832 (0.097%)
Total MC	2494.2782	18.8832 (0.0076%)	38.328 (0.0154%)	0.1377 (0.0001%)

2017 Single Higgs MC before and after preselections for each final state, and process efficiency. Note that for processes with less than 100 unweighted MC events after a selection, a null value is shown.

MC Sample	Before preselection	SL	FH	FL
GluGluHToGG	89.2729%	13.5335%	47.9892%	-%
ttHJetToGG	0.9567%	31.2564%	37.6455%	39.5654%
VBFHToGG	6.3403%	1.9657%	2.7853%	-%
VHToGG	3.43%	53.2444%	11.5801%	60.4214%
Total	100%	100%	100%	100%

Contribution w.r.t total 2017 Single Higgs MC for various phase spaces: Before and after preselections for each final state. Note that for processes with less than 1000 unweighted MC events after a selection (100 for the fully-leptonic preselections), a null value is shown.

MC Sample	Before preselection	SL (efficiency)	FH (efficiency)	FL (efficiency)
Semi-leptonic HH $ ightarrow$ WW $\gamma\gamma$	0.3042	0.1044 (34.306%)	- (-%)	- (-%)
Fully-hadronic HH $\rightarrow WW\gamma\gamma$	0.3012	- (-%)	0.0966 (32.07%)	- (-%)
Fully-leptonic HH $\rightarrow WW\gamma\gamma$	0.0741	- (-%)	- (-%)	0.0098 (13.214%)

2017 HH MC before and after preselections for each final state, and process efficiency. Note that for processes with less than 100 unweighted MC events after a selection, a null value is shown.

Samples: Reweighing

Reweighting technique used to obtain NLO distributions with per event weights:

 $w(\mathsf{m}_{HH}, |\cos\theta^*|) = \frac{d\sigma_f(m_{HH}, |\cos\theta^*|)}{d\sigma_i(m_{HH}, |\cos\theta^*|)} \cdot \frac{\sigma_i}{\sigma_f}$

- Ratio of differential cross sections between original and target
- Compute custom coefficients of analytical parameterization from privately produced samples in order to derive event weights. Can use to reweigh **any** HH sample → any benchmark at **NLO**:

Predicted analytic parameterization matches Powheg generated SM HH at NLO. Expect to be able to reweigh any HH sample to SM at NLO

Run 2 HH \rightarrow WW $\gamma\gamma$: Semi-leptonic DNN

Reweight HH signal events at LO to NLO from independent sample for training:

(a) Scaled Leading Photon p_T

(b) Scaled subleading photon p_T

Reweighted quantities

- Reweighted events model SM HH signal well
- Use for training, statistically independent from SM at NLO generated samples for signal modelling

Abraham Tishelman-Charny

Semi-leptonic LO to NLO reweighting

Lepton and MET

Class	Unweighted Yield	Weighted Yield	Class Weight	Class Weight * Weighted Yield
HH	866833	2.232871	388214	866833
Н	78108	1.057757	819501	866833
Continuum Background	61408	16104	53.8278	866833

Unweighted and weighted yields, and class weights applied during Semi-Leptonic DNN training, without data sideband scale. Weighted class yields are reweighted by class weights to the unweighted HH yield.

Semi-leptonic SM DNN training details

MC Sample	Unweighted	Weighted
DiPhoJetsBox_MGG-80toInf	5108	581.97343
GJet_40toInf	110	48.26491
$tt\gamma\gamma+0$ Jets	4633	17.01703
$tt\gamma + Jets$	1564	52.52178
tt+Jets	288	51.77128
W1Jets_pT_150-250	1298	64.88303
W1Jets_pT_250-400	341	7.42416
W1Jets_pT_400-inf	217	1.80622
W1Jets_pT_50-150	23	13.60197
W2Jets_pT_150-250	1612	60.29933
W2Jets_pT_250-400	777	12.25016
W2Jets_pT_400-inf	531	3.05085
W2Jets_pT_50-150	59	27.52279
WGGJets	360	132.12192
WGJJToLNu_EWK_QCD	140	30.91906
ttWJets	74	0.5721

Unweighted and weighted training MC yields in the sideband region, including semi-leptonic training pre-selections and only events with a DNN output score > 0.1.

Evaluate DNNs in a control region with inverted diphoton electron veto requirement, leads to Z→ee-like region

Semi-leptonic sig vs. NCats

Total significance vs. number of categories in DNN categorization optimization. Total significance computed as category significances summed in quadrature. S = weighted HH events, B = weighted number of MC events modeling the continuum background in the signal region plus the number of weighted single H events.

Abraham Tishelman-Charny

Thesis defense: HH search at CMS

27 July, 2022

Run 2 HH \rightarrow WW $\gamma\gamma$: Semi-leptonic categorization

- Categorize events based on DNN score
- Optimize category boundaries by signal sensitivity, estimated by HH and simulated background in signal region
- Vary number of bins [10, 20, ..., 1520] and categories [1-5], perform simultaneous optimization of all category boundaries
- Result: Largest expected significance at 90 equally sized bins width 1/90 between DNN scores 0.1 to 1.0.

CatN	DNN Min	DNN Max	S	B _{SR}	Data _{Sideband}	Significance
0	0.89	1.0	0.03568	0.81037	8.0	0.03935
1	0.84	0.89	0.02267	1.84053	12.0	0.01668
2	0.63	0.84	0.07483	15.73924	111.0	0.01885
3	0.1	0.63	0.13379	494.07101	3457.0	0.00602

Semi-Leptonic DNN Category Boundaries and yields in signal region for 4 Categories

Benchmark	κ_{λ}	κ_t	c ₂	c_g	c_{2g}
SM	1.0	1.0	0.0	0.0	0.0
1	7.5	1.0	-1.0	0.0	0.0
2	1.0	1.0	0.5	-0.8	0.6
3	1.0	1.0	-1.5	0.0	-0.8
4	-3.5	1.5	-3.0	0.0	0.0
5	1.0	1.0	0.0	0.8	-1
6	2.4	1.0	0.0	0.2	-0.2
7	5.0	1.0	0.0	0.2	-0.2
8	15.0	1.0	0.0	-1	1
9	1.0	1.0	1.0	-0.6	0.6
10	10.0	1.5	-1.0	0.0	0.0
11	2.4	1.0	0.0	1	-1
12	15.0	1.0	1.0	0.0	0.0
8a	1.0	1.0	0.5	0.8 3	0.0
1b	3.94	0.94	$\frac{-1}{3}$	0.75	-1
2b	6.84	0.61	$\frac{1}{3}$	0.0	1.0
3b	2.21	1.05	$\frac{-1}{3}$	0.75	-1.5
4b	2.79	0.61	13	-0.75	-0.5
5b	3.95	1.17	$\frac{-1}{3}$	0.25	1.5
6b	5.68	0.83	1/3	-0.75	-1.0
7b	-0.10	0.94	1.0	0.25	0.5

Parameter values of the benchmarks 1-12 [1], 8a [2], 1b-7b [3] and the Standard Model.

In other refs, LO distribution has a dip for 8, not found in updated ref. Chose diff point of cluster 8 which does show a dip, and which we call 8a.

Samples: Background

- Background samples for **DNN**:
 - $\gamma\gamma$ +Jets
 - γ +Jet
 - $tt\gamma\gamma$
 - $tt\gamma+Jets$
 - tt+Jets
 - W+Jets
 - W $\gamma\gamma$ +Jets
 - W γ +Jets
 - DYJetToLL_M-50
 - WW

- Single Higgs backgrounds for all final states' signal region:
 - GluGluHToGG
 - VBFHToGG
 - VHToGG
 - ttHJetToGG

- Left: Samples used for Semileptonic and Fullyhadronic DNNs, not used to model the background.
- Right: Single Higgs samples used to model resonant background in signal region

Per channel Run 2 HH \rightarrow WW $\gamma\gamma$ results

Per channel kl scan

Per channel c2 scan

Semileptonic 20 EFT benchmarks upper limits

Fullyhadronic 20 EFT benchmarks upper limits

Fullyleptonic 20 EFT benchmarks upper limits

CMS L1 trigger

Background modelling

- Many fit functions considered for fit to data sidebands
- All functions with p-value > 0.05 are used to determine ±1 and ±2σ uncertainty bands on best fit
- In this case: Best fit function is an order-1 exponential

Semileptonic background model, all fit functions

Swiss-cross variable defined as: 1-E4/E1

(a) Swiss cross definition

Signal-like (in-time, low swiss cross score)

Spike-like (out-of-time and/or high swiss cross score)

(b) Reconstructed time vs. swiss cross score

Phase II: HL-LHC luminosity

The LHC will be upgraded during LS3 (2026-28) to the HL-LHC in order to provide more luminosity to detectors. More data for analysis

- ▶ HL-LHC will provide about **90%** of the total LHC+HL-LHC dataset
- Experiments must plan accordingly to prepare for corresponding collision conditions
- LHC: Higgs discovery was a major goal
- <u>HL-LHC:</u> Higgs pair production discovery will be a major goal

Abraham Tishelman-Charny

Thesis defense: HH search at CMS